

PROJECT OUTLINE AND EXPERIMENTAL TEST

Joint Research Project on "Evaluation and Mitigation of Seismic Risk for Composite Masonry Buildings in Bhutan"

in the framework of SATREPS (Science and Technology Research Partnership for Sustainable Development) 2017-2023

Department of Culture
Ministry of Home and Cultural Affairs

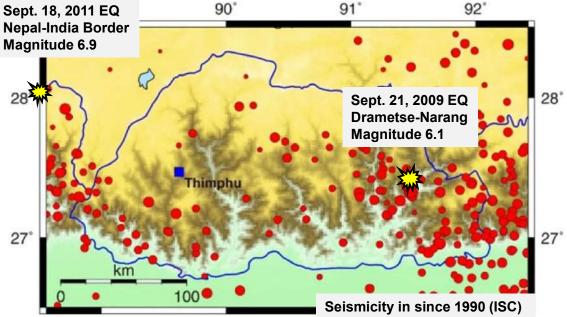
Department of Engineering Services Ministry of Work and Human Settlement

TRADITIONAL CONSTRUCTION PRACTICES IN BHUTAN

1. Rammed earth construction

2. Random Stone Masonry Construction

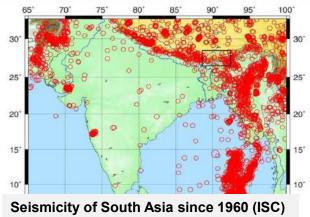
According to National Statistics Bureau (NSB) of Bhutan, <u>total of 66% of households live in</u> <u>traditional buildings, out of which 83% of households</u> living in such traditional buildings belong to rural areas.


List of Historical Earthquakes that affected Bhutan

	Magni tude	Date	Location (Epicenter)
1	7.0	1713	Border Between Bhutan and Arunachal Pradesh
2	7.6	11 June 1806	Eastern Bhutan
3	8.0	12 June 1897	60 Km from south of Bhutan in Assam
4	6.5	12 May 1906	Border of Bhutan, India and China
5	5.7	13 August 1910	Border of India and Bhutan
6	8.0	15 January 1934	India and Nepal Border
7	6.7	21 January 1941	South Eastern Bhutan
8	7.3	29 July 1947	India and China Border
9	8.7	15 August 1950	India and China Border
10	6.4	23 Feb 1954	Border of Bhutan, India and China
11	6.6	29 July 1960	Southern Bhutan
12	6.4	19 Nov 1980	North East India
13	6.8	20 August 1988	Nepal

	Magni tude	Date	Location (Epicenter)
14	5.5	26 Mar 2003	Paro
15	5.0	11 Feb 2006	Arunachal Pradesh, felt in Trashigang
16	5.7	14 Feb 2006	Sikkim
17	5.8,	24 Feb 2006	Dewathang
	5.5		
18	6.1	21 Sep 2009	Narang, Mongar
19	6.9	18 Sep 2011	Sikkim, India
20	4.5	21 Oct 2011	Bhutan
21	4.6	1 March 2012	Bhutan
22	4.7	10 July 2012	Bhutan
23	4.0	6 June 2013	Bhutan
24	4.3	4 Dec 2013	Bhutan

TRADITIONAL HOUSES: VULNERABLE TO EARTHQUAKES



Based on National Recovery and Reconstruction Plan:

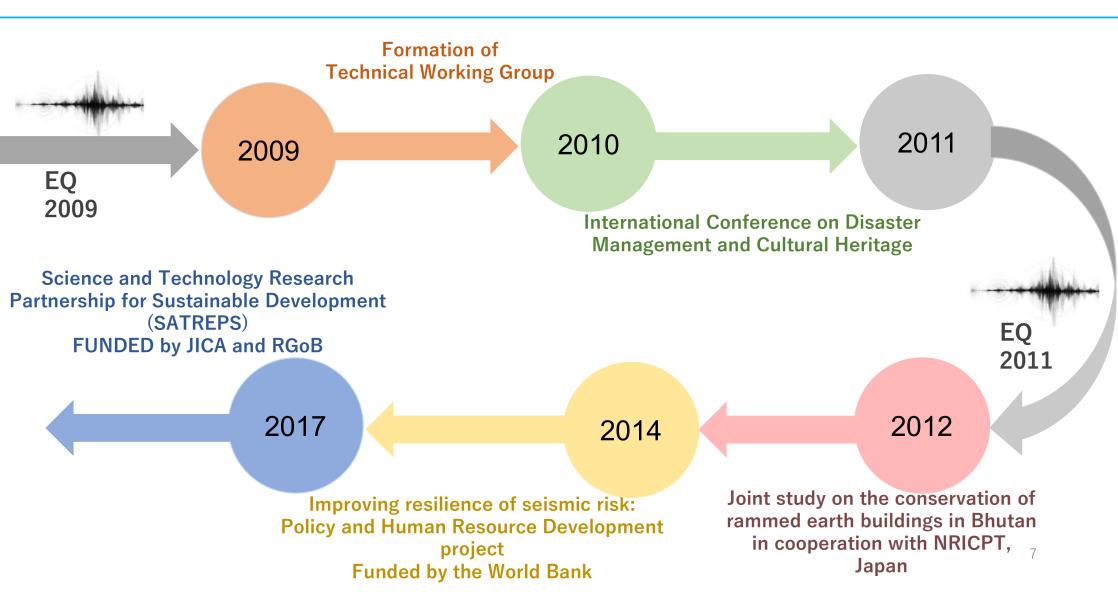
2009 EQ: Affected 4950 rural homes

2011 EQ: Affected 6977 rural homes

2009 Earthquake Damage to Rural Houses

		Houses Damaged					
Sl. No	Dzongkhag	Beyond Repair	Major Repair	Partial Repair	Minor Repair	Dead	Injured
1	Trashiyantse	21	70	400	106		
2	Zhemgang	1			1		
3	Trashigang	147	445	439	572	2	18
4	Pemagatshel	25	24	24	187		3
5	Lhuentse		6	24	87		
6	Mongar	260	331	413	1253	6	18
7	Samdrupjongkhar	7		10	11	4	
8	Gasa			23			
9	Punakha		5				
10	Chukha				22		
11	Sarpang				2		
12	Tsirang	1	3	2	28		
	Total	462	884	1335	2269	12	39

Training of Trainers (ToT): SATREPS Project


2011 Earthquake Damage to Rural Houses

			Houses D	amaged			
	Dzongkhag	Cat III Total Collapse	Cat II Substant ial to Heavy Damage	Cat I Minor Damage	Total	Dead	Injured
1	Bumthang	0	0	62	62	0	0
2	Chhukha	18	101	551	670	1	0
3	Dagana	12	70	367	449	0	0
4	Gasa	5	15	209	229	0	0
5	Наа	200	319	515	1034	0	14
6	Lhuentse	0	2	61	63	0	0
7	Mongar	4	35	439	478	0	0
8	Paro	54	129	837	1020	0	0
9	Pemagatshel	1	4	27	32	0	0
10	Punakha	3	39	868	910	0	0

			Houses I	Damaged			
	Dzongkhag	Cat III Total Collapse	Cat II Substanti al to Heavy Damage	Cat I Minor Damage	Total	Dead	Injured
11	S/jongkhar	0	1	18	19	0	0
12	Samtse	81	189	645	915	0	0
13	Sarpang	1	3	46	50	0	0
14	Thimphu	4	16	336	356	0	0
15	Trashigang	0	0	0	0	0	0
16	Trashiyangtse	1	15	367	383	0	0
17	Trongsa	15	22	21	58	0	0
18	Tsirang	0	0	6	6	0	0
19	Wangdueg	1	47	145	193	0	0
20	Zhemgang	1	1	48	50	0	0
	TOTAL	401	1008	5568	6977	1	14

Training of Trainers (ToT): SATREPS Project

ROAD MAP: LAST ONE DECADE

PROJECT FRAMEWORK

NAME OF THE PROJECT:

"Project for Evaluation and Mitigation of Seismic Risk for Composite Masonry Buildings in Bhutan"

PROJECT DUTATION: April 2017- March 2023

OVERALL GOAL:

Seismic Technology for disaster mitigation of the composite masonry buildings is disseminated across the country

PROJECT FRAMEWORK:

SATREPS (Science and Technology Research Partnership for Sustainable Development)

FUNDNG AGENCY:

Japan International Cooperation Agency (JICA) and Royal Government of Bhutan

JOINT RESEARCH TEAM

Department of Disaster Management, MoHCA
Department of Culture, MoHCA
Department of Engineering Services, MoWHS

Department of Engineering Services, MoWHS

Department of Goology and Mines MoEA

Department of Geology and Mines, MoEA

Nagoya City University

National Institute for Earth and Disaster resilience (NIED)

Kyoto University

Nihon University

Kagawa University

Tohoku University

OUTPUTS OF THE PROJECT

JOINT RESEARCH

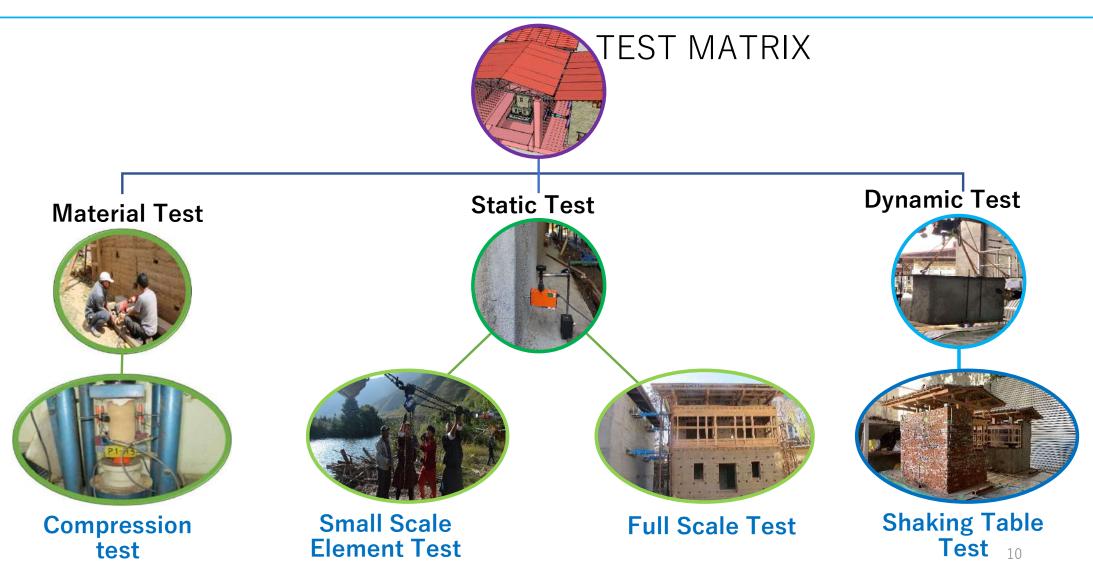
OUTPUT 1

Evaluation of seismic risks of composite masonry
Buildings

OUTPUT 2

Development of seismic technology for constructing and strengthening composite masonry buildings

OUTPUT 3


Enhancement of the dissemination mechanism for the seismic technology

- Development of seismograph network
- Hazard map
- Risk map for 2 pilot sites

- Tests
- Development of analysis methods
- Development of guidelines

- Training programmes
- Public Awareness programmes
- Development of a manual and visual materials

OUTPUT 2: DEVELOPMENT OF SEISMIC TECHNOLOGY

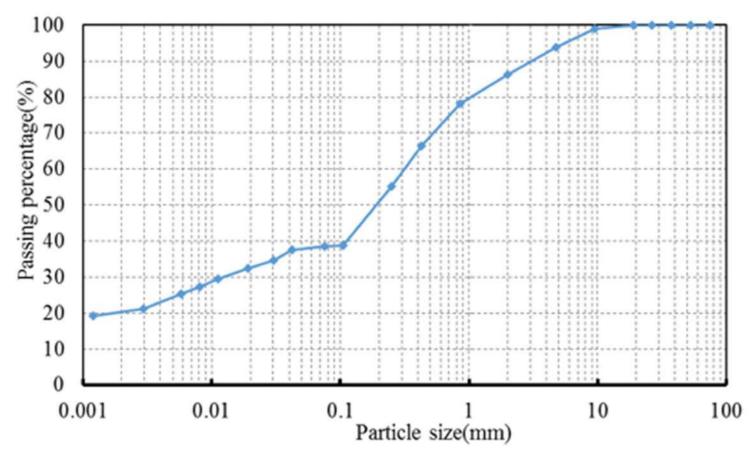
Material Test

Conduct the material test of composite masonry buildings.

Coring of cylindrical specimens

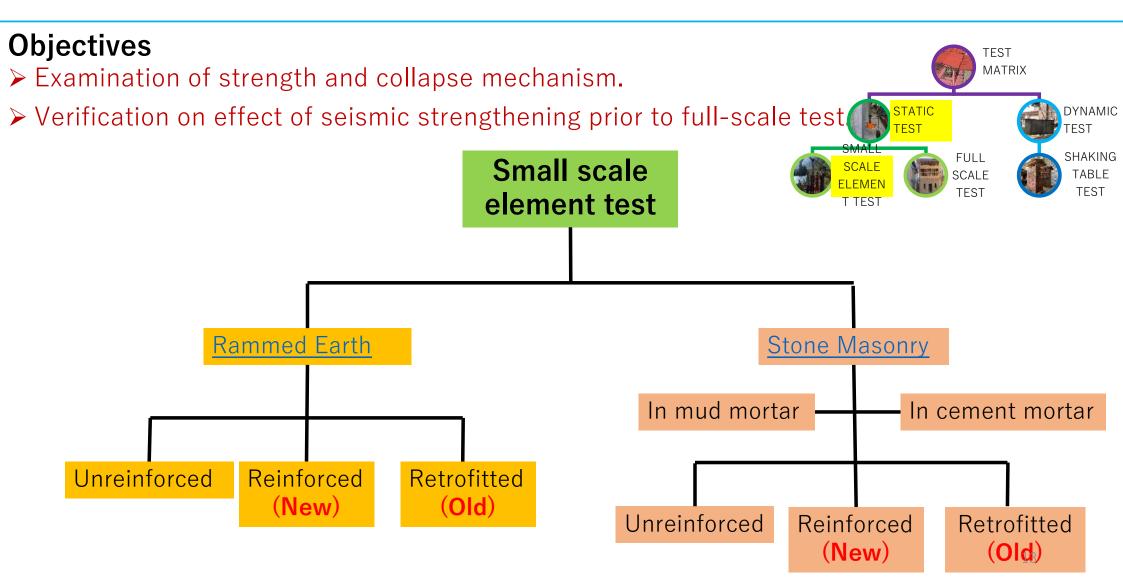
Compressive test

Split tensile strength

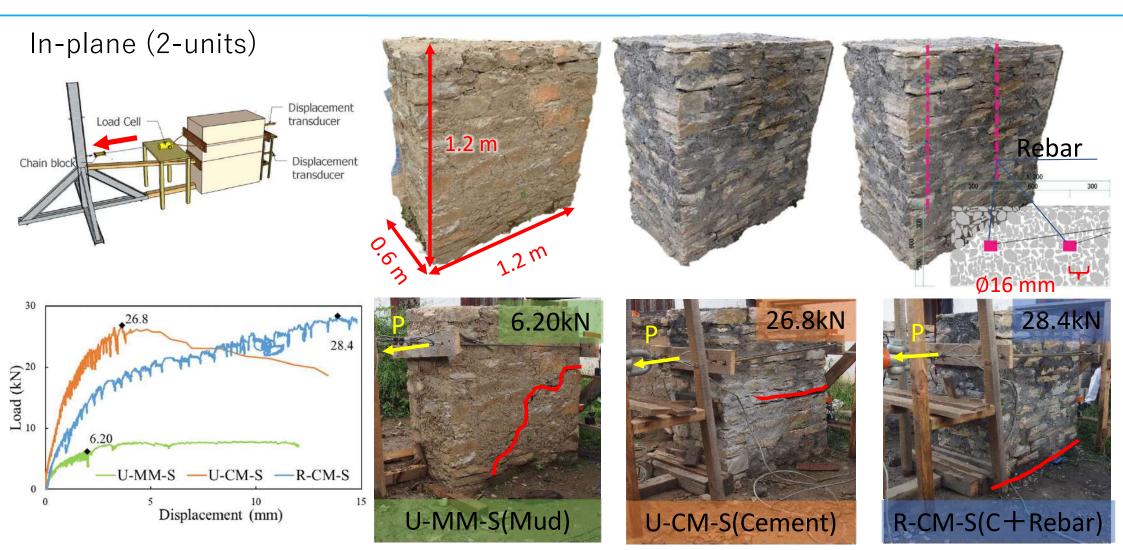

Properties of rammed earth from material characterization tests.

Specimen ID		k density kg/m³)	Compressive strength (MPa)		Tensile strength (MPa)		Elastic modulus (MPa)	
ш	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.
U–RE	2028	97.4	0.85	0.20	0.16	0.04	79.28	25.12
R-RE	1927	97.8	0.49	0.09	0.12	0.04	35.80	17.50

To determine the density, compressive strength, tensile strength and corresponding Young's modulus of elasticity.


Material Test

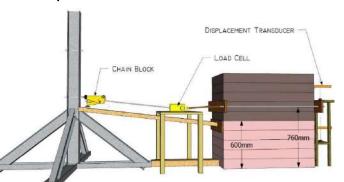
Grain size distribution for rammed earth soil used in test specimens

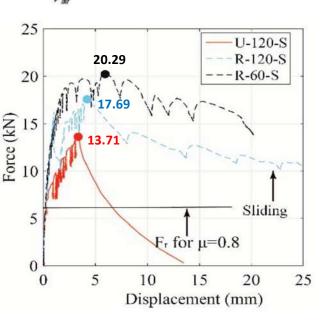


The grain size distribution of the RE used showed a particle size range of 0–10 mm

Small scale element test

Small scale element test: Stone masonry(inplane)

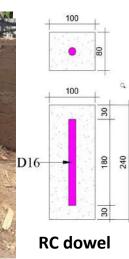

Small scale element test: Stone masonry(out of plane)

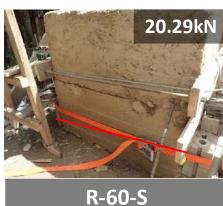

Out-of-plane (3-units) Load Cell Displacement transducer Rebar Displacement 1.8 m Chain block transducer Displacement transducer Ø16 mm 7.99kN 13.3kN 15 Load (kN) 51 U-MM-B — U-CM-B — R-CM-B R-CM-B(C+Rebar) 10 20 40 U-CM-B(Cement) U-MM-B(Mud)

Displacement (mm)

Small scale element test: Rammed earth (in plane)

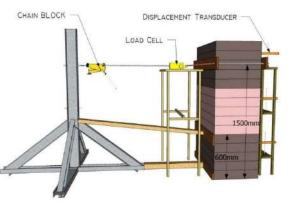
In-plane (2-units)

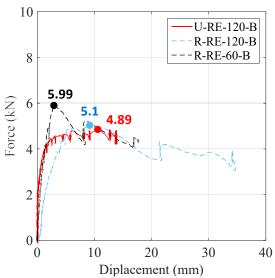




- Unreinforced
- Layer thickness-120

R-120-S


- RC dowel
- Layer thickness-120

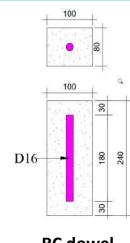


- RC dowel
- Layer thickness-60

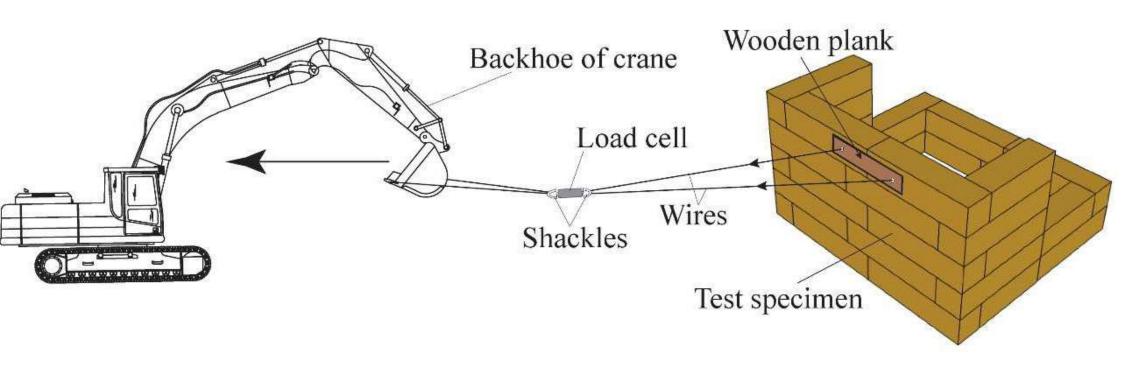
Small scale element test: Rammed earth (out of plane)

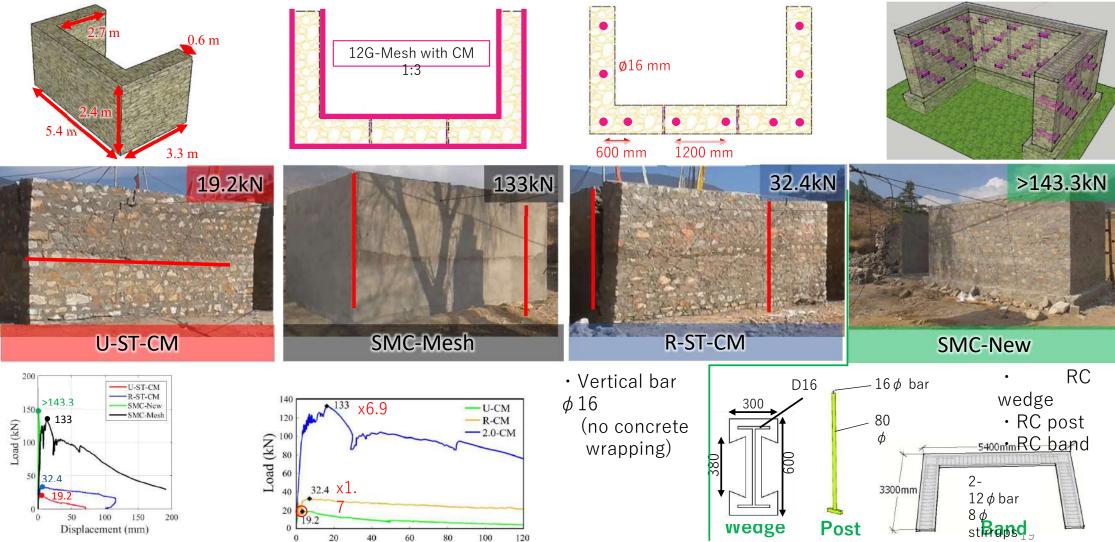
Out-of-plane (3-units)

- Unreinforced
- Layer thickness-120



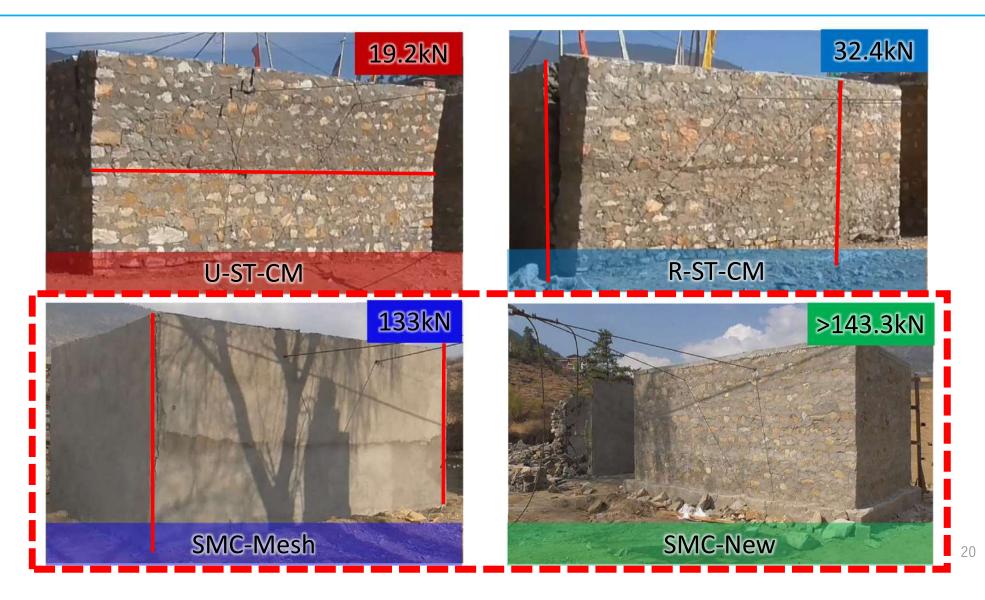
RC dowel Layer thickness- • 120



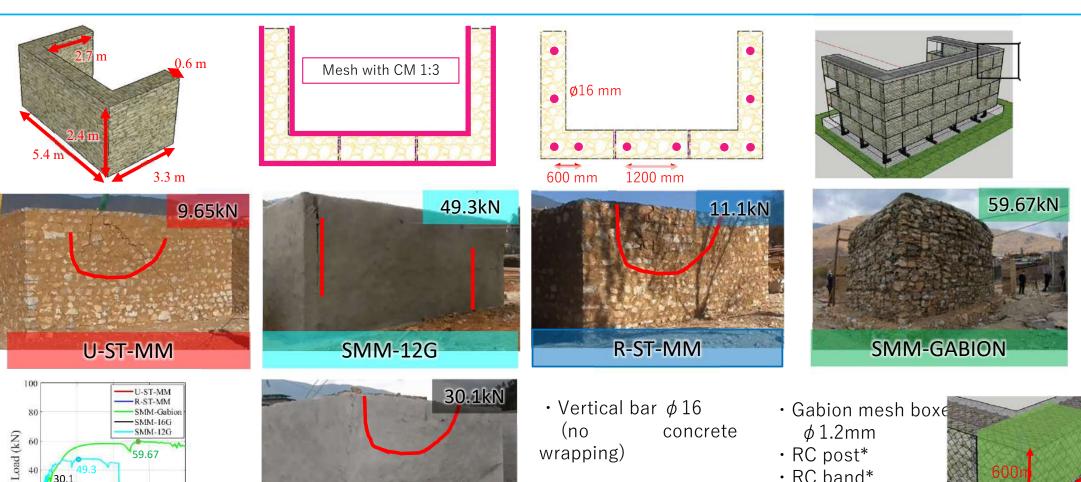

- RC dowel
- Layer thickness-60

PULL DOWN TEST

Test set up



PULL DOWN TEST: Stone masonry in cement mortar(out-of-plane)

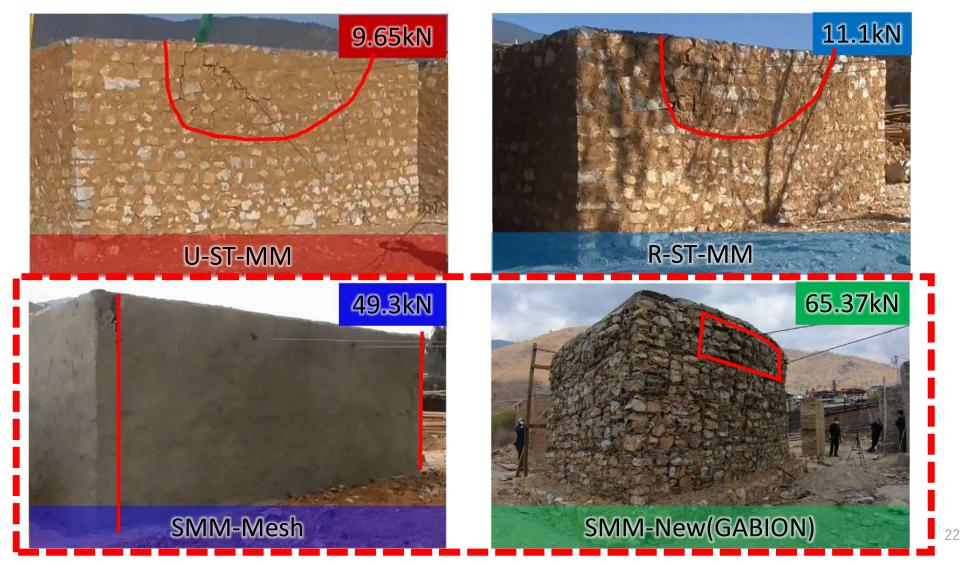


Displacement (mm)

PULL DOWN TEST: STONE MASONRY IN CEMENT MORTAR

PULL DOWN TEST: Stone masonry in mud mortar(out-of-plane)

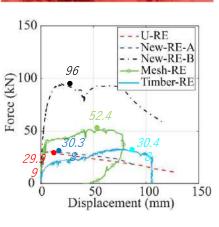
SMM-16G

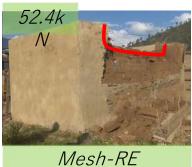

200

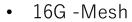
Displacement (mm)

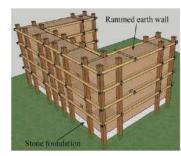
RC band*

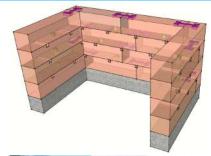
(* refer SMC_Nev


PULL DOWN TEST: STONE MASONRY IN MUD MORTAR

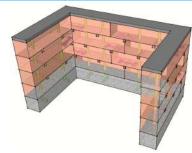

PULL DOWN TEST: Rammed earth (out-of-plane)



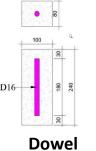


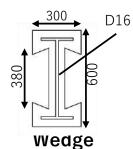


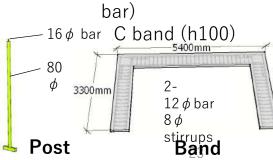
• 1cement:4mud



Timber-RE



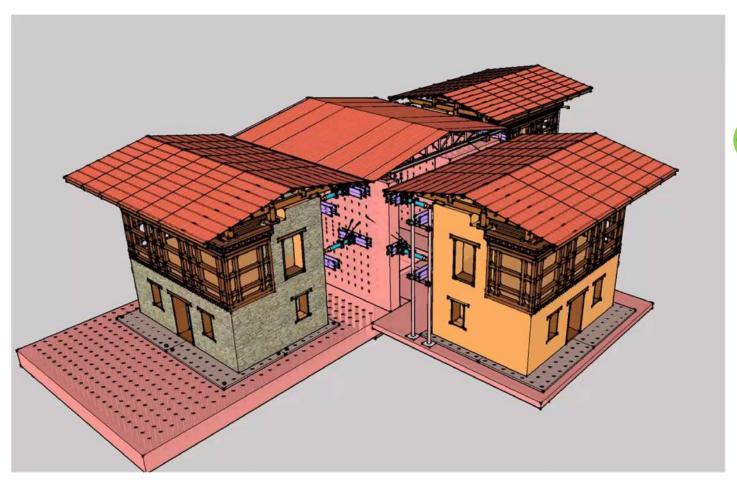

- RC wedges
- RC dowels

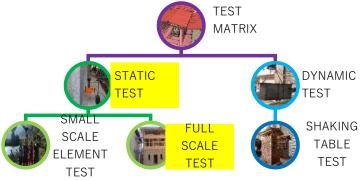


- RC wedges
- RC posts $(80 \phi, 16 \phi)$

SMALL SCALE ELEMENT TEST

Conclusions

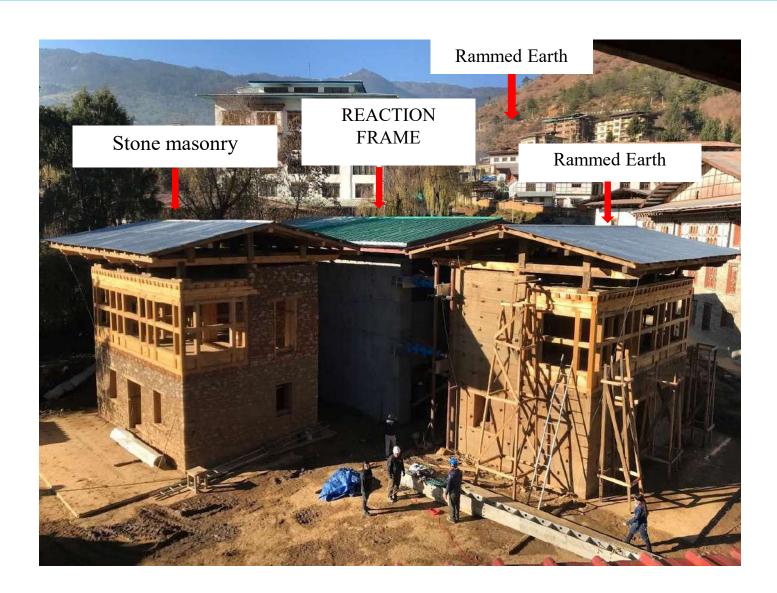

Rammed earth

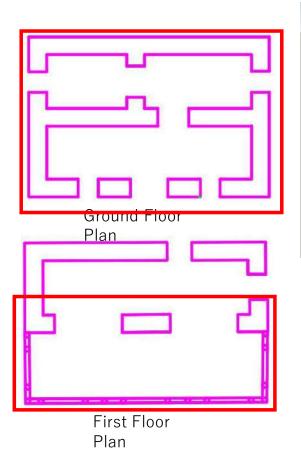

- RE-New > 3.2 x U-RE
- RE-16G > 1.75 x U-RE

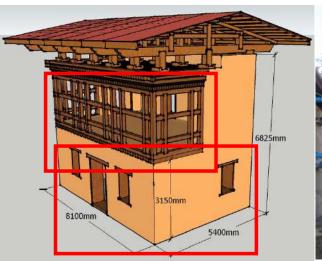
Stone Masonry

- SMC-New > 7.46 x U-ST-CM
- SMC-Mesh > 6.93 x U-ST-CM
- SMM-New > 6.77 x U-ST-MM
- SMM-Mesh > 5.11 x U-ST-MM

Decided to use those strengthening techniques in fullscale buildings to further verity its effectiveness




Objectives


- Examination of strength and collapse mechanism.
- Verification on effect of seismic strengthening.

Overview

Specimen Details


Isometric View

Front View

Side View

- Represents typical Bhutanese building
- 2-storied building
- Floor plan: 8.1x5.4 sqm
- GF: Solid wall with small openings
- FF: Large opening in the front

Retrofitting method rammed earth

Cement plaster (CM

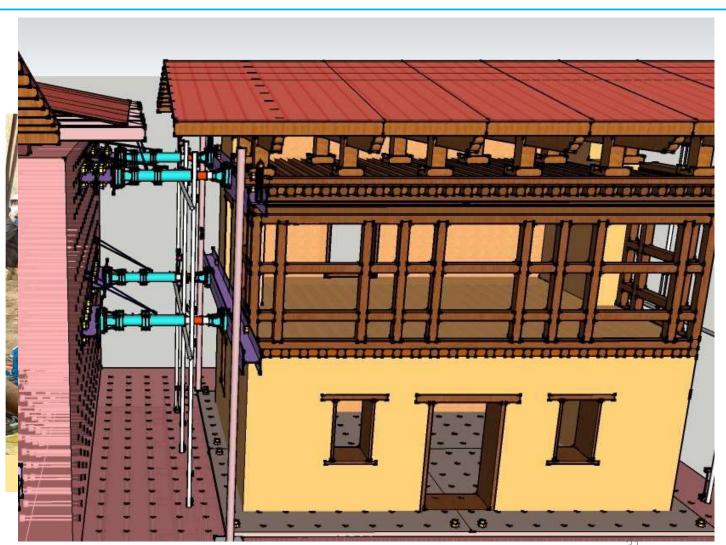
Completion of

X-shaped timber

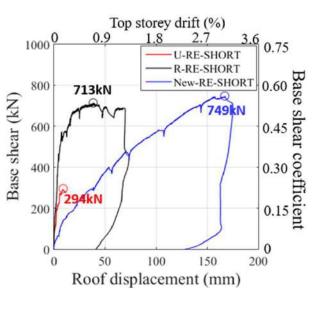
28

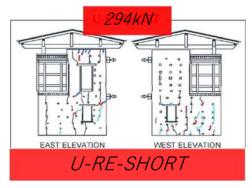
Reinforcing method_Rammed Earth/Stone Masonry

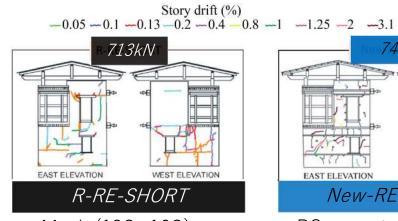
Reinforcing cost: 20% of the building


Retrofitting method_stone masonry building

SET UP AND INSTRMENTATION



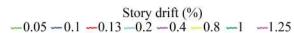

Rammed Earth: Full-scale test

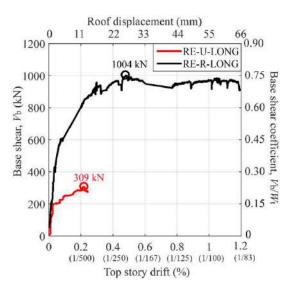


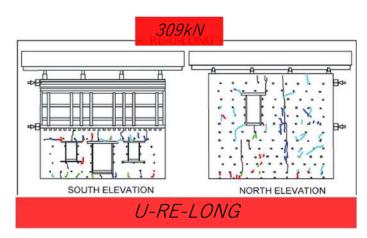
Unreinforced

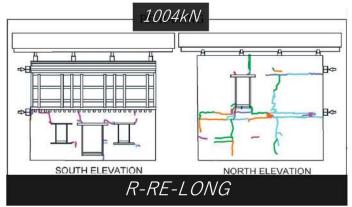
- Mesh (12G+16G)
- CM 1:3

- RC $(80 \, \phi \, ;$ post 12ϕ)
- RC band


Rammed Earth: Full-scale test

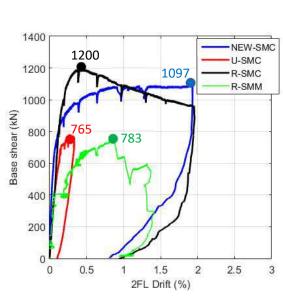


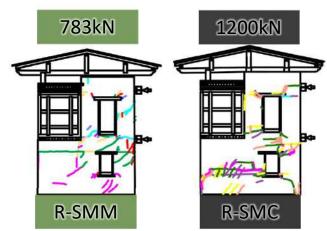



Main mesh: 12G Lapping mesh: 16G

Unreinforced

- Mesh (12G+16G)
- CM 1:3


FULL-SCALE TEST: STONE MASONRY (SHORT SPAN)



- Unreinforced
- CM1:3

- Mesh (12G+16G)
- Mud mortar
- Mesh (12G+16G)CM1:3

- PC post $(80 \phi;$ $12 \phi)$
- RC band
- CM1:3 34

Conclusions

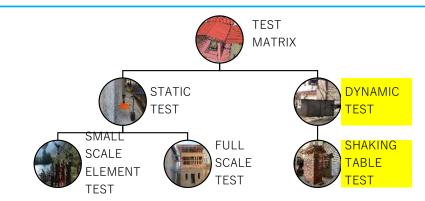
Rammed earth

- RE-New > 2.55 x U-RE
- > RE-16G > 2.4 x U-RE

Stone Masonry

SMC-New > 1.5 x U-ST-CM

- 1. The proposed <u>strengthening measures enhanced</u> the <u>strength</u> of <u>composite masonry</u> <u>buildings.</u>
- 2. Controlled the failure patterns of the wall.
- 3. It also united the building structure into one component.


RC dowels, wedges and RC bands are recommended in new construction

Mesh is recommended to retrofit the existing buildings

SHAKING TABLE SYSTEM

OBJECTIVES

- > Relationship between input earthquake and response.
- > Verification and effect of seismic strengthening.
- > Examination of strength and collapse mechanism.
- > Visual educational materials for public awareness.

SPECIFICATIONS

SIZE	3m x 3m
STROKE	± 150mm
FREQUENCY	0.1 Hz – 5Hz
PGA	0.5G
WEIGHT LIMITATION	10 tonnes

SHAKING TABLE TEST_RAMMED EARTH

LIST OF TEST: SMALL SCALE ELEMENT TEST

	Stone Masonry	Rammed Earth
	1).Unreinforced mud Mortar	1).Unreinforced layer thickness-120
Inplane Test	2).Unreinforced cement Mortar	2).Reinforced RC dowel layer thickness-120
	3).Reinforced cement mortar	3).Reinforced RC dowel layer thickness-60
	4).Unreinforced mud Mortar	4).Unreinforced layer thickness-120
Out of Plane	5).Unreinforced cement Mortar	5).Reinforced RC dowel layer thickness-120
	6).Reinforced cement mortar	6).Reinforced RC dowel layer thickness-60

LIST OF TEST: SMALL SCALE ELEMENT TEST(PULLDOWN TEST)

STONE MASONRY	RAMMED EARTH
1).Unreinforced cement mortar	1).Unreinforced rammed earth
2).Mesh Retrofitted cement mortar	2).Mesh retrofitted rammed earth
3).Reinforced cement mortar (vertical rebar without cover)	3).Timber retrofitted rammed earth
4).Reinforced cement mortar (Wedge, post and rc band)	4).Reinforced rammed earth with RC dowel and wedge
	5).Reinforced rammed earth with RC wedge, post and band
5).Unreinforced mud mortar	
6).Mesh Retrofitted mud mortar	
7).Reinforced mud mortar (vertical rebar	
without cover)	
8).Gabion mud mortar (Wedge, post and rc band)	

LIST OF TEST: FULLSCALE TEST

	STONE MASONRY	RAMMED EARTH
Short direction	1).Unreinforced cement mortar	1).Unreinforced rammed earth
	2).Mesh retrofitted mud mortar	2).Mesh retrofitted rammed earth
	3).Mesh retrofitted cement mortar	3).Reinforced rammed earth with RC post and band
	4).Reinforced cement mortar (rc post, band)	4).Torsion wire retrofitted rammed earth
Long direction		5).Unreinforced rammed earth
		6).Mesh retrofitted rammed earth

LIST OF TEST: SHAKING TABLE TEST

	STONE MASONRY	RAMMED EARTH
Short direction	1).Unreinforced mud mortar (2 nos)	1).Unreinforced Rammed earth (2 nos)
	2).Mesh retrofitted mud mortar (2	1).Onemored Rammed Earth (2 1103)
	nos)	2).Retrofitted Rammed earth (2 nos)
	3).Unreinforced cememt mortar	
	4).Unreinforced cement mortar with through stones	
Long direction	5).Unreinforced stone masonry (1 nos)	3).Unreinforced Rammed earth (1 nos)
	6).Retrofitted stone masonry (1 nos)	4).Retrofitted Rammed earth (1 nos)

KADRINCHELA

THANK YOU FOR YOUR ATTENTION

SATREPS PROJECT
"Evaluation and Mitigation of Seismic Risk for Composite
Masonry Buildings in Bhutan"